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Abstract. A convenient method is proposed to deal with the effects of some large- 
scale sur fxe  roughness when calculating the tunnelling current between two macro 
scopic rough metal bodies-fw instance the two members of an electrical ’quasi- 
contact’. Surface topography is introduced through the distribution of local distances 
between electrodes, which descibes both their nominal shape and their local rough- 
ness. E v a  for surf- w simple as a plane, cylinder or sphers. this distribution is 
quite intricate and exhibits a highly tortuous shape. A few periodic roughness mod- 
els, and a more realistic approach by me- of fractals, are successively considered. 
In any ewe, we prove that only the beginning of the distance distribution is essential 
from the viewpoint of the tunnelling current. A computed example allows us to 84- 

sess quantitatively how the local topography may change drwtically aqy prediction 
concerning the value of the current. Comparison between some reliable sphere/plane 
experimental results and the corresponding thewetical predictions proves to be very 
good and attests to the relevance of the proposed method. 

1. Introduction 

The work we present below forms part of a study of some types of electric contacts. 
More precisely, our overall purpose is to develop some models of electronic transport 
phenomena through electrical ‘quasi-contacts’. By quasi-contact we mean a situation 
in which both contact members are very close together, but remain separated at any 
point by a layer of an intermediate insulating body that is sufficiently thin to allow 
tunnelling of electrons. This intermediate body may be either a lubricant introduced 
into the contact to reduce wear [l-31, an oxide which has formed on the metal sur- 
faces [4], or an organic polymer deliberately deposited on the electrodes [5,6]. We 
think that this ‘quasi-contact’ formulation gives a quite good description of real con- 
tacts, since in most cases actual metallmetal junctions are known to be rare or even 
non-existent [q. 

As a whole, the problem thus formulated is rather complex. We present, in this 
paper, the original method we have developed to calculate the tunnelling current 
contribution in a ‘quasi-contact’ involving an easily describable intermediate medium 
(i.e. vacuum or any insulator that can be approximated by the widely used ‘conduction- 
hand model’). This method mainly allows us, considering some not too severely rough 
electrodes, to take into account the effects of roughness, which prove to he crucial 
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from the viewpoint of the tunnelling current. Our purpose is, of course, not to bring 
an universal answer to the general and intricate problem of tunnelling between two 
rough surfaces, but rather to make possible quantitative predictions about current 
values in some topographically well defined and experimentally feasible situations. 
The commonly used sphere/plme geometry has been chosen for contact members 
chiefly because i t  is widely accepted to be representative and because we were able 
to obtain some reliable physical measurements in such a configuration. As the local 
radius of curvature at any point of both surfaces is supposed to be very large compared 
with atomic radii, the theoretical approach we propose in the following is uety  digerent 
from the scanning-tunnelling-microscope formalism [8-121. 

To begin with, we show that the tunnelling current through the sphere/plane 
‘quasi-contact’ can be worked out by considering separately one function describing 
the physical phenomena involved and another dealing with the topographic surface 
data. This latter function, hereafter termed t?S/ah, expresses the distribution of 
distances between the interacting contact members. We then study its shape and 
behaviour for simple systems like plane/plane, cylinder/plane or sphere/plane, first 
with some periodic roughness models, and then with a more realistic approach to 
irregular surface topography by means of fractals. Following this substantial devel- 
opment, some concrete calculations and commeots concerning the tunnelling current 
through a golden sphere/plane ‘vacuum quasi-contact’ are given by way of illustration. 
The last section is devoted to a convincing experimental validation involving an orig- 
inal sphere/plane apparatus acting in air. To conclude, the key contributions of our 
approach are stressed, and we consider other possible applications of our method- 
especially how to extend it to situations in which the thin intermediate insulating 
layer requires a more complex energy-band description. 

F Eouzd and L Boyer 

2. Introduction of the BS/ah distribution 

To begin with, let us suppose that both metal surfaces are ideally smooth. Let us 
assume the plane to be the (2, y )  plane and the sphere to be situated in the half-space 
( z  > 0). Let R be its radius, d the shortest distance between ‘quasi-contact’ members, 
and h(z ,  y) the distance between two points on the plane and on the lower half-sphere 
with the same ( z , y )  coordinates. In the proximity of the base of the sphere, this 
distance is not very different from the shortest geometrical one. R is assumed to 
be large (typically a few millimetres) compared with atomic radii, whereas d must 
be small enough to  allow a finite flow of tunnelling electrons. (For a given voltage 
drop between two equipotential electrodes, the tunnelling current density Jt is known 
to decrease exponentially as the separation between the surface elements considered 
increases 1131.) 

With the above notation, it is obvious that 

and there is a one-to-one mapping between r = and h. Therefore the 
tunnelling current density Jt can be written either as J,(h) or as Jt (r ) .  So long as the 
local slope on the sphere remains very small, we can split the sphere/plane geometry up 
into a succession of planejplane tunnelling junctions resulting in concentric rings [14], 
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and the tunnelling current I ,  can then be expressed as 

I, = ir- ZrrJ,(r) d r  

where rmm is the limit beyond which any contribution to the integral may be con- 
sidered as negligible. Since it is found, in practice, that r,, < R, we justify the 
plane/plane approximation a posteriori. 

To deal with real electrodes, we must now take into account the  inescapable rough- 
ness of surfaces, ppl(z,y) and p,,(z,y). Let us suppose, as is commonly assumed in 
such problems, that all the corrugations of both surfaces can be gathered onto one 
of them, for instance onto the plane [15]. Then the equation of the resulting ‘rough 
plane’ becomes z = ppl(z,y) - psp(z,y) = p(z,y) (instead of z = 0). The roughness 
parameters are assumed to be such that the local slope at any point of the rough 
plane is small enough to allow the assumption of juxtaposed elementary plane/plane 
junctions to be retained. The pseudo-distance h(z, y) is now expressed as 

Thus the mapping between r and h is no longer one-bone, and It cannot be calculated 
from (2). 

The most judicious way to overcome this difficulty is then to introduce the distri- 
bution of local distances between the surfaces, aS/ah, and to express the tunnelling 
current by 

where hmin and h,,, depend on the roughness p(z,y) features; furthermore h,, is 
linked to the convergence of the integral. The current density J,(h) depends only on 
the theoretical approach to this specific tunnelling problem. Its exact expression is 
linked to which energy band model, potential barrier shape, etc, you choose. On the 
other hand, the function (aS/ah) conveys only the topographic data. I t  combines, in 
fact, the classicaly encountered ‘height distributions’ [16] relative to each of the two 
interacting surfaces. In that way, it describes both their nominal shape and their local 
roughness. 

Such a separation between the physical phenomena and the surface topography 
may also be convenient when studying other kinds of short-distance interactions be- 
tween two ‘large’ solids. For instance, we show in appendix A the way it could be 
used to calculate the mechanical interaction energy and forces between two large, 
not-towrough bodies. 

3. Typical aS/ah distributions 

In this section we first present some typical aS/ah distributions for simple periodic 
roughness models. Although at first glance these models look rather far from real- 
ity [16], they are very helpful in understanding the genesis of the %’/ah distributions, 
their strange shape and behaviour, and their utmost sensitivity to roughness features. 
Then we propose a more realistic approach to irregular topographies by means of 
fractal surfaces. The corresponding aS/ah functions are given and compared with the 
previous ones. 
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9.1. Periodic roughness models 

Let us choose initially for the rough plane the two simplest periodic models which 
come to mind: the ‘sinusoidal corrugation’ model 

F EouxC and L Boyer 

p(x, y) = a cos 2r- + pz (:, ) 
and the ‘crossed sinusoidal corrugation’ model 

The ‘wavelengths’ A, and A, considered at present (typically 0.5 to 2.5 pm) are large 
compared with atomic radii and small compared to the sphere radius. Optimistic 
values of the amplitude a for a naturally smooth or well polished surface may be 
taken to be in the range 10 to 25 %, [17]. 

To lay the foundations of the asfah distributions, let us consider, first, the parallel 
smooth planefrough plane geometry. In this configuration, our 8Sjah for both smooth 
and rough planes are identical to the classical ‘height distribution’ for the rough plane 
alone, with a shift of d. 

For a rectangular field of analysis on the smooth plane, As wide in the z-direction 
and L, in y-direction, one can obtain (see appendix B) for the roughness model (RI) 

or, using a series expansion 

ah - -  a0 

For a rectangular field of analysis with sides A, and A,, the expression relative to 
roughness model (R2) is (see appendiw B) 

(2n - l)!!)’ [ ( h  ; d)’] ”} 
as XJ, 

1- - 

One may note the similarity of the equations (6) and (7). The two aSf8h dis- 
tributions are plotted in figure 1 as histograms ((a) and (d)). In fact, they reveal a 
significant difference: for the roughness model (Rl), the surface density is maximum 
around the tops of ‘hills’and the bottom of ‘valleys’ (i.e. for h around (&a)), whereas 
for the roughness model (R2), the maximum density occurs near the median plane 
(i.e. for h around d) .  In addition, it is clear that both histograms (especially ( a ) )  are 
quite far from a Gaussian distribution, which is reputed to be a good approximation 
for many real surface structures [E]. 

There is no problem in finding the expression for 8Sfah within configurations 
involving a smooth plane and any other smooth simple surface like a cylinder or a 
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Figure 1. (a), ( b ) ,  (e) and (d), (e), (f) referto therougbnessmodeIs(R1) md(R2), 
respectively. The distance between nomind surfsces is d = 20 A; roughness parame 
tna an U = 10 A, A. = Ay = 1 pm and v= = cy = 0. ( a ) ,  ( d ) :  smooth plane/mugh 
plane geometry. Plot of the surface density aS/ah from theoretical distrihutiona (6) 
and (7) an histograw. It can be seen that for (Rl)  aS/ah is a maximum around the 
tops of ’hius’ and the bottom of ‘valleys’ (h Y d * a), whereas for (R2), the msxi- 
mumdenaityoccwnearthemedisnplane(h2d). (a), (e): mmthcyliader/mugh 
+e geometry. Plot of n(h)6S/6h obtained “ i c &  with SS = 1 A x 1 A and 
6h = 0.05 A. We consider a 1 pmlong portion ofr cylinder of circular CTOSS section 
with curvature R = 5 mm and its axis of revolution parallel to the y-axis. Note 
the multiplicity of juxtaposed and sometimes owlapping basic pattans. When ex- 
duding peaks, the general appearance of these histog”, particularly dear in (e), 
is due to the aS/ah distribution (8) for smooth SOI& (dotted curves). (c), (f): 
smooth sphere/rou& plane geometry. Plot of n(h)SS/Sh obtained numaicaUy with 
SS = 4 A x 4  A and 6h = 0.05 A for a s p h a  with radius R =  5 nun. Commentsare 
& before, the aS/ah distribution for smooth solids behg given in this case by (9) 
k t e d  of (8). 
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sphere. For a smooth plane and a portion of length L of a smooth cylinder of circular 
section with radius R and its axis parallel to the plane, we obtain 

F HourC and L Boyer 

and, for a smooth sphere with radius R facing a smooth plane 

(9) _ -  as 2 ? r ( R + d - h ) ~ 2 a R  when h - d a R .  
ah - 

The complexity of the expressions (6) and (7) for such a simple configuration as the 
plane/plane one suggests that  their combination with (8) and (9) when a cylinder or a 
sphere is facing a rough plane will make an analytic solution impossible. This is why 
it is essential to deal with these more intricate situations by numerical calculation. 

The way the computation is performed is quite simple. We split up the field of 
analysis on the ( I ,  y) plane into a vast number of tiny squares with area 6 5  = 6 x 6 ~ .  
Then, the pseud+distance h(r ,  y) is calculated at  the centre of each elementary square 
and classified with a step 6h. In this way, we finally get the successive numbers n(h,.) 
of elementary squares whose h belongs to the interval [hmi, + (k - 1)6h, h,,, + k6h[. 
Calculation parameters 62, 6y and 6h must, however, be chosen in such a way that 
any successive ‘contour lines’, (h  = h,) and (h  = h,+,), are always separated by a 
few elementary squares, which definitely occurs when 

Under such conditions, we may take it as certain that, for a given h 

6s as lim n(h)- = -(h) 
Sh-0 6h ah 

and thus this numerical method does allow us to plot a faithful shape of intricate 
8 / B h  distributions. Unfortunately, 6h cannot, in practice, be made as small as one 
would wish, since the conditions (IO) result in corresponding small values for 62 and 
6y, and therefore result in a prohibitively long calculation time. 

We present in figure 1 some results obtained within cylinder/plane and 
sphere/plane configurations (I(b),  I(e) and l (c) ,  I(f), respectively). In both situ- 
ations, the general appearance (i.e. excluding peaks) is due to functions (8) or (9) 
relative to smooth solids (dotted curves).We notice that the basic pattern obtained 
with the plane/plane geometry, for roughness models ( R l )  or (RZ), (figures I(a)  and 
I ( d ) ,  respectively), is repeated with occasional overlapping, as if some kind of spatial 
convolution had occurred. In fact, the origin of such tortuous shapes may be quite 
easily understood, at least in the case of the cylinder/plane configuration, as we ex- 
plain in figure 2: a discontinuity, for a given h, conveys that a ‘hill’ or a ‘valley’ begins 
or ceases to participate in the distribution of local distances. 

Once suitable programs have been developed, there is nothing to prevent one from 
studying more complex roughness models. We present for instance in figure 3 the 
aS/ah distributions concerning plane/plane and sphere/plane configurations for two 
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Figure 2. Origin of the tortuous shape of a n(h)6S/6h histogram in the case of 
the smooth cylinder/rough plane geometry with T O U ~ ~ ~ ~ S S  model (Rl). All param- 
eten concerning calculation and topography are as given in figwe l(6). (a) Plot 
of h(z)  = d + R - - a cos(2m/Xl) versus I. NB. We emphasize that 
the very dissimilar scales on the I- and Lues make the local slope look, in places, 
very steep, whereas in practice it n e w  exceeds 5%. (6) Plot of the corresponding 
histogram. We see that a discontinuity, for a given h, signifies that a ‘hill’ (upper 
case letters), OP a ‘valley’ (lower case letten), begins or ceases to participate in the 
distance distdhution For h increasing from 0, the ‘hills’ A-E succesively begin to  
contribute to the histogram, each of them adding the hegirdng of a slightly distorted 
basic pattem on the histogram. Then the ‘valleys’ a and b occm: elementary tiny 
square areas relating, fvst to the central cormgation, then to the next two, cease to 
be taken into account, inducing two successive ends of the basic pattern on the his 
topram. This continues, with alternating hills’ and ‘valleys’ generating a succession 
of truncated, slightly distoded and overlapping basic histograms. Such a structure is 
obviously very sensitive to parmetem such as a, A, or qs: a small change in one of 
these parameters may result in a completely different arrangement of the truncated 
patterns. 
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Figure 5. (U), (b) and ( e ) ,  (d)  refer to the double periodic r o u g h  models (R3) 
or (R4), respectivcly. Roughness parametm are q = 9 A, (LZ = 1 A, XI, = XI, = 
1 pm, Xz, = Xz, = 0.1 pm, and ‘PI= = Q I ~  = M= = wv = 0. (a), [c): smooth 
pkne/rough plane geometry. Plot of n(h)6S/Sh numerically obtained with SS = 
1 A x 1 A and 6h = 0.05 A. As could be logically expected, superposing a smaller 
periodic component onto the previous one on each histwam in fi-s 1(a) and 
I ( d )  d t s  in small rrplicas of the b&c pstteme thmel-. Note that the ‘double 
crossed sinusoidal cormgation’ leads to a histogram (c) whoee shape is a little nearer 
to a Gaussian &hibution. (b ) ,  (d): smmth spherefrough plane geometry. Plot of 
n(h)SS/6h obtained numerically with SS = I A X  4 A and 6h = 0.05 A. Comments 
m m  before, but the parts refer to the histograms in + l ( e )  and lu). 

double-periodic roughness models derived from (RI) and (RZ): 

One may notice that the ‘double crossed sinusoidal corrugation’ (R4) leads to a his- 
togram (figure 3(c)) whose shape is nearer to the Gaussian distribution. Therefore it 
is clear that any multiple-periodic roughness model could allow to render quite cor- 
rectly some features of actual surfaces. However, a fractal viewpoint seems to be a 
more judicious and neat approach to the real complexity of surface topography. 

3.2, Ezample of fmetul modelling 

Mandelbrot’s fractal geometry has blossomed widely in the past few years, since it 
provides both a description and a mathematical model for many of the complex shapes 
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Figure 4. ( a )  Fractal rough profile generated as explained in subsection 3.2 from 
21 equidistant positions on the z-axis between -10 pm and +10 pm. The reduction 
ratio is r = f and the H m t  exponent H = 0.65. This profile looks quite realistic 
and could have bem recorded experimentally. NB. The very dissimilar scaler on the 
5- and z-axes exaggerate the local slope, whi& never exceeds 5% in practice. ( 6 )  The 
dwical  height distribution corresponding to the profile in (e). The smoothed figure 
of the histogram presents s expected a pleasing Gaussian shape. 

and seemingly self-similar patterns in nature [lS]. Of course, it appears very suitable 
for the realistic simulation of the topography of surfaces [19-211. 

In this subsection we present a bi-dimensional fractal model for the rough plane 
(i.e. such that its calculated profile is the same in any section perpendicular to a 
given direction-for instance the yaxis). This simplification results in notably shorter 
computation times for aS/ak distributions. Although it may seem quite restrictive, 
we think it can give a correct representation of the tiny area-typically a few j" (see 
below)-that is active from the tunnelling current viewpoint, since an actual physical 
surface does often present a local bi-dimensional structure [16]. 
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The way we obtain our fractal rough profile is inspired by the ‘successive ran- 
dom addition’ algorithm introduced by Voss 1221 to generate fractional Brownian 
motion with an arbitrary resolution. The starting point is a sequence of positions 
zIr  z2, . .  . ,  zN with corresponding altitudes z lr  z2,  ..., zN. To be concrete, let 
us choose N = 3; let us assume that the zi are equidistant (for instance 0, and 
1) and the initial altitudes are set equal to zero. Next, these three altitudes are 
given a random addition chosen from a normal distribution with zero mean and unit 
variance U? = 1. Then the midpoints of the zi intervals become additional posi- 
tions at which the altitudes are estimated by interpolation. The positions are now 
zlr  z2,  . . . , z5 = 0, i, $, $, 1. All five altitudes are then given a random addition 
with zero mean and a reduced variance U; = H is called the ‘Wurst exponent’ 
and it lies in the range 0 to 1; r is a reduction ratio. The five positions obtained are 
again interpolated to the midpoints of the intervals to give nine new positions, and so 
on. After n such random addition-interpolation cycles, ( 1 + 2” ) points of the profile 
are obtained, the variance of the addition in the nth generation of the process being 
U: = ~ ~ ( ~ - ~ ) ~ o : .  Voss bas shown that such a process leads to self-fine curves with 
a fractal dimension 0, = 2 - H .  Therefore the surface resulting from sliding such a 
curve along the y-axis has a fractal dimension D, = 3 - H. 

Figure 5. Two examplen of aS/ah distributions relating to the smooth 
spherc/frsctd rough p h  geometry. The smooth sphere (R = 5 m) is 20 A from 
the median plane ( z  = 0); the abscissa of ik centre is (a )  -2 um and ( 6 )  +2 pm, 
respectively. One UUI see the considerable effect of the lateral position of the sphere 
upon aS/ak  shape. Huge discrepancies -P, particularly at the begiluring of &he 
distribution, which can be very steep (e) or rather slowly increasing ( b ) .  
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We have generated such fractal curves from N = 21 equidistant positions on the 
z-axis in the range -10 pm to +10 p n  and for various values of r and H ,  bearing in 
mind the conditions (10) on the local slope. W e  show in figure 4(a) a pleasing profile 
solution obtained using n = 5 generations of the above algorithm with r = and 
H = 0.65 (the profile obtained from the algorithm has been resealed in order to have 
zero mean and to be such that zmm - zmin = Za, i.e. the peak-to-valley amplitude 
of periodic models (Rl) and (R2)). This computed profile looks quite similar to real 
measured ones. It must be borne in mind that the very dissimilar scales on the 
I- and z-axes etaggerate the local slope, which in practice never exceeds 5%. The 
corresponding height distribution is shown in figure 4(b): it presents, as it could be 
expected, a pleasant Gaussian-like shape. 

distributions can easily be obtained for the smooth sphere 
with radius R facing our fractal rough plane: for a given distance d between nominal 
surfaces, each small lateral displacement of the sphere leads to a new relative topc- 
graphic situation. Despite unchanged individual height distributions for each body, 
the effect on the behaviour of aS/ah is quite notable, as one may realize by looking 
at figure 5. All this proves that it is impossible to  use masoning based on the usual 
statistical parameters when the local distance between smoothed surfaces is variable. 
Huge discepancies occur, especially a t  the start of the distance distributions, which is 
precisely the most crucial part of them from the viewpoint of tunnelling current, as 
we show immediately below. 

Then numerous 

4. Application: quant i ta t ive calculations of tunnelling current through a 
sphere/plane vacuum ‘quasi-contact ’ 
The aS/ah distributions enable us to calculate in concrete terms the effects that the 
different roughness models described above have on the tunnelling current flowing 
between two very close metal electrodes, one being a plane and the other a sphere, 
separated by vacuum. The tunnelling current, as expressed in equation (4), may be 
approximated numerically, considering (II), as 

In practice, the terms are summed until the quantity 11 - It(p+,)/It(p)l becomes less 
than a given q, which occurs very quickly because of the exponential decrease of the 
current density Jt(h) .  We present in figure 6 the typical behaviour of J,(h), aS/ah(h) 
and the partial integral It(fi) = Jh j~ J,(u)aS/au(u)du. The tunnelling current den- 
sity shown relates to gold electroaks and a voltage drop set at 100 mV. We used 
for its calculation the free-electron model and the true potential barrier shape, in- 
cluding the image force expression due to Simmons [23]. For h greater than 4 h, 
J,(h) has been found to decrease exponentially as J,(h) = Jt(0)exp(-h/h,), with 
Jt(0) = 9.745 x l O I 5  A m-2 and h, = 0.47 A. The aS/ah distribution plotted relates 
to a given position of the smooth sphere (Q = 5 mm) above our fractal rough plane 
described in subsection 3.2 (distance between nominal surfaces: d = 15 A) .  One can 
verify that the exponential decrease of J,(h) literally overshadows the tortuous shape 
of the 3S/% distribution and that the integral in (4) (or its discrete equivalent ex- 
pression in (12)) does converge very quickly, i.e. for h varying within a few angstroms. 

h 
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Figure 6. Typical behaviour of the tunnelling c u m n t  density J,(h), the 
combined height distribution aS/ah(h) and the partial integral L(h) = 
J,”,, Jt(u)(EJS/au)(u)d*, for the smooth sphere/rough plane geometry. The Jt(h) 
shown relates to gold electroder and a voltage drop set to 100 mV. For h greater 
than 4 A ,  we get the exponentially decresing law Jt(h) = Jt(O)exp(-h/ho), with 
Jt(0) = 9.745 x 1015 A m-? and ha = 0.47 A. The a s f a h  distribution shown refem 
to a giwn position of the smooth sphere above the fractal rough plane described in 
suhsedion 3.2 (abscissa of the sphere centre, t2 pm; radius. 5 m; distance be- 
tween nominal surfaces, 15 A). One CM verify that the exponential decrease of Jt(h)  
literally overshadows the tortured shape of aS/ah, and that the inteegral giving It 
convwes within a few angstrSms. Therefore, only thestart of the aS/ah distribution 
is essential from the viewpoint of tunnelling current. 

Therefore, only lhe start of ihe a S / a h  distribution i s  essential from ihe uiewpoint 
01 iunnelling cuweni .  This important result, that is in accordance with intuition, is 
brought out through our method in a qvantilotive way. 

The value h’ for which one gets 99% of the total current may be easily worked out. 
Then, the projection onto the (z, y) plane of the electrodes a r e s  such as hmi, < h < h’ 
can be regarded as ‘tunnelling current spots’. Results that relate to the periodic 
and non-periodic roughness models described in section 3 are summarized in tables 1 
and 2. The physical conditions are those described in figure 6 (gold/vacuum/gold 
configuration, Vapp = 100 mV, d = 15 A). In connection with this we show the 
calculated current values (second row), the profiles of both electrodes within and 

Table  1. (Following folio) Summarized results of the tunmlling c u m n t  for the periodic roughness 
models presental in subsedion 3.1 (gold sphere/plane separated hy vacuum, VaPP = 100 mV, d = 
15 A). The cme of two smooth electrodes is given bs a refermce. We prewnt the calculated current 
values (secondrow), theprofiles of both considered electrodes within and around the tunnelling active 
zone (third mw), and the resulting ‘current spots’ (fourth row) through which 99% or the tunnelling 
c-l is Bowing. The profiles are plotted in a rec tandar  frame corresponding to a 7 p m  distance 
along the I- (or p) axis and a variation from -15 A to +30 A along the z-axis. The current spots 
M presenkd within squm frames which represent 7 p m x 7  pm areas of the (z, y)  plane. From these 
results, it is clear that even a very small periodic roughness is able to cause a huge increme in the 
tunnelling m n t .  
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around the tunnelling active zone (third row) and the resulting ‘current spots’ (fourth 
row). One can a8sess quantitatively how the local topography significantly modifies 
both the current values and the shapes of the spots. As these spots show a slight 
lateral expansion around the peaks of dominant bumps and therefore mainly concern 
electrodes areas of smaller local slopes, the technique described actually works for  
surfaces hillier than those hither20 considered (it will be enough if the local slope in 
the active zones remains below a tolerable threshold). The case of some real, more 
severely rough surfaces can thus be tackled through our method (cf section 5). 

To complete this section, let us mention that the exponential decrease of J, (h)  
(for h greater than 4 8,) causes the exponential decrease of the tunnelling current IC 
as a function of the distance d between nominal surfaces. This appears to hold true 
whatever aS/ah distribution one considers, since changing d is, in fact, equivalent to 
shifting the &?/ah distribution along the h-axis (see appendix C for hhe development 
of this argument). 

5. Experimental validation 

Some actual physical measurements have recently allowed us to test the validity of 
our theoretical predictions in a topographically well-controled gold sphere/air/gold 
plane situation. This experimental side is the main spin-off from our collaboration 
with researchers at the Ecole Centrale de Lyon (Professor J M Georges, A Tonck and 
J L Loubet), who designed an original and very reliable sphere/plane apparatus al- 
lowing several mechanical and electrical characteristics to be measured simultaneously 
for very slight separations. 

The principles and features of the quite exceptional instrument developed by Tonck 
et a1 have already been detailed in recent papers [24,25]. Briefly, a feedback loop al- 
lows to move a macroscopic spherical body towards and away from a plane object, 
with a resolution of about 0.15 8, in terms of the relative displacement of the solids. 
Electrical measurements can be performed by simply using metal or plated bodies. 
The determination of the relative separation between surfaces is carried out through 
capacitive transducers, the origin being extrapolated from the sphere/plane capaci- 
tor variations as a function of the relative displacement. It can be shown that the 
separation thus measured is nearly identical to the distance d between the smoothed 
surfaces [26]. The electrodes used to get the data reported below were a silicon plane 
and a pyrex sphere of radius 3.5 mm, both covered with a 400 8, cobalt sticking layer 
and a 600 8, terminal gold coating. A STM examination of such surfaces showed a 
gently undulating aspect-like an irregular version of our ‘crossed-sinusoidal model’- 
similar to  the mesoscopic roughness already observed on some Au thin layers [27], 
with peak-twvalley heights of 50-60 8, and a mean distance between adjacent bumps 
of about 500 8,. An exhaustive presentation of the main mechanical and electrical 
results obtained with these electrodes in ambiant air will be given in a forthcoming 
letter [ZS]. 

Figure 7 shows some current versus distance experimental characteristics (broken 
curves) measured for applied direct voltages Vas,, of 10 mV and 50 mV. The arrows 
indicate the inward and outward approach, carried out with a constant speed of rel- 
ative displacement of 0.5 8, s-l (quasi-static operation). In view of the considerable 
variation of the current, log(I,,,) is plotted instead of I,,,. The linearity of the curves 
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thus obtained conveys a law of the form 

F H o d  and L Boyer 

I(d,  Vapp) = IdV,,)exp(-d/dJ (13) 

which is similar to the general prediction of appendix C for tunnelling current between 
two gently rough electrodes. The experimental value found for do is 0.87 A. 
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Figure 7. Plot or the current vemus distance charactaistics obtained for low &red 
voltages in a gold sphere/air/gold plane experiment (broken curves), and the come. 
sponding theordical culvcs calculated with o m  method (full tines). The fitting is 
all the more convincing since the roughness parameters considered in the model M 

very similar to the real ones obsrrved by STM. 

To fit the measured characteristics with theoretical curves stemming from our 
model requires one to  choose suitably: (i) the main physical parameters euch as the 
‘effective work function’ aeff of the golden electrodes and the permittivity e,* of the 
inter-electrode medium that are necessary for the determination of the current density 
function, and (ii) a roughness model of the surfaces, essential for any current value 
calculation. Concerning physical parameters, the best agreement has been found by 
taking @eff = 1.27 eV and c , ~  = 86, [26,28]; a plausible interpretation is proposed 
in these references in terms of the existence of a condensed water micromeniscus in 
the interface region. As regards surface roughness, a ‘crossed-sinusoidal model’ with 
Q = 29 A and A, = A, = 500 A-i.e. a topography very similar to the real one 
observed with STM-has proved to be very good, as one may be persuaded by con- 
sidering the theoretical curves (full lines) in figure 7. Such a nearly perfect agreement 
between calculation and data has also be obtained for current versus voltage charac- 
teristics [26,28]. 

6. Conclusion 

We propose in this paper an original method allowing to quantify the effects of a 
large-scale surface roughness when calculating the tunnelling current between two 
large rough metal bodies. Based on the assumption of small local slopes, this method 
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proposes that  it is possible to separate the physical and topographic contributions- 
in this case the current density function J , (h )  and the distribution of local distances 
between electrodes a S / a h .  As the slope conditions actually only concern tunnelling 
active areas, some quite severely rough surfaces can be tackled perfectly well in this 
way, provided that the immediate vicinity of the peaks of the dominant bumps do 
not curve too steeply. Some rather academic periodic models have been considered to 
bring out the physical content and intrinsic interest of a S / a h  distributions. A more 
realistic approach of irregular surfaces has also been carried out by means of fractals. 
In any case, the illustrative calculations clearly bring to the fore quantitatively: (i) the 
necessity of a sound knowledge of the combined local height distribution a S / a h  in 
order to obtain a credible prediction of current values, (ii) the crucial role or the 
low part of this distribution and (iii) the small size of the tunnelling active zones 
(which we call the ‘tunnelling current spots’). Even more realistic models of irregular 
surfaces could quite easily be envisaged, for instance generalizing Vas’  algorithm 
to three-dimensional irregularities [20,22]. However, some of the ‘naive’ periodically 
bumped surfaces presented in the text can give a quite relevant description of certain 
real topographies, as shown convincingly by the nearly perfect agreement between 
calculation and experimental data  in the previous section. 

Parameters that require a significantly wider computation field, like capacitance 
(which involves the whole surface of electrodes), can also be dealt with perfectly sat- 
isfactorily via our method, provided that this ‘local’ technique and the ‘ macroscopic’ 
calculation are carefully coupled together [26]. The specific case of the sphere/plane 
capacitance should in the coming months give rise to some experimental investigations 
using the original apparatus described briefly in the text. 

The extension of the method to situations in which the thin intermediaie insulating 
layer requires a more elaborate electronic model can be envisaged within the same 
global principle. However, the calculation of the current density then becomes more 
complex, since, if we insist on regarding a band structure as still being valid, two 
transport processes must now be considered [29]. The first one involves the bottom of 
the insulator conduction band, whereas the second one involves the top of its valence 
band (‘twc-band’models [30-333). The crucial parameters are then the electron affinity 
and the energy gap of the insulator, as well as, of course, the metal work function. 
Under suitable circumstances, it can be expected that one of the barriers involved may 
be lowered sufficiently to increase the tunnelling current density significantly. Taking 
these ideas into consideration with the prospect of adding to the understanding of 
electric contact interfaces forms part of our objectives in the near future. 
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Append ix  A 

To illustrate the fact that the separation between the physical phenomena and the 
surface topography may also be useful in calculating the mechanical interaction energy 
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and forces between two large, gently rough solids, we shall simply develop the broad 
lines of the calculation relative to mechanical interaction between a sphere and a rough 
plane, proceeding as Israelachvili does with ideally smooth surfaces [34]. 

Let us keep the same notation for the geometrical parameters. The potential 
energy of two atoms or small molecules separated by a distance U is assumed to be 
purely attractive and of the form w(u) = -C/u". Both solids are supposed to he 
made of the same material with a concentration p of atoms or molecules. The net 
interaction energy, for an atom or a molecule at a distance h away from the surface of 
a plane, may be written 

F H o d  and L Boyer 

2aCp w(h) = - 
(n - 2)(n - 3)h"-3 

One may easily obtain for the net interaction energy between the whole sphere and 
the rough plane the expression 

Integrating by parts and considering the fact that R > hmi, and, therefore, that only 
small values of h contribute to the integral, we then obtain 

W = -  2aCp2 /"*' - 1 (g) d h  
(n - 2)(n - 3)(n - 4) h& h"-' 

which is a function of d through hmi,, h,,, and aS/ah.  The attractive force F, in 
the z-direction may be obtained by the well known expression F, = -aW/ad.  The 
case n = 6 corresponds to van der Waals' law. 

Appendix B 

We present here the way we get the analytical expressions (6) and ( 7 )  for aS/ah 
in the smooth plane/rough plane situation with the periodic roughness models (Rl) 
and (R2). 

Let us consider, first, the roughness model (RI). It is clear that h(z,y) only 
depends on the I coordinate and is given by 

~ ( I , Y ) = ~ - ~ C O S  (:= 2 ~ - + + =  ) . ( B 1 )  

For a rectangular field of analysis on the smooth plane, A, wide in the r-direction and 
L, long in the ydirection, the area S(h)  which is less than h away from the rough 
plane is expressed as 

from which we get 
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This last equation may also be written in the form of a series expansion as 

writing (2n - I)!! = (2n - 1) x (2n - 3) x . . . x 3 x 1. 
The case of the second roughness model (RZ), in the same geometric configuration, 

is somewhat more complicated. Now h depends on both the x and y coordinates, and 
is given by 

For a rectangular field of analysis with sides A, and A, on the smooth plane, one may 
write S(h) as 

where zM(h) is such that h = d - a cos[2r(xM(h)/A,) + p=]. Differentiation of (B6) 
and a few transformations lead us to 

which, by the variable change 8 = 2r(2/Az) + p=, may be turned into 

- 2 X A  (1 -s inZ8/sin28M(h))- '~Zd8.  (B8) a s  _ -  
a h  x2alsinBM(h)l 

This latter equation involves a complete elliptic integral of ihe first kind, and therefore 
we finally get 

as 2x,xY - - - -K[sin(BM(h))] a h  n2a 

or, making the elliptic integral K more explicit [35] 

Appendiv C 

Let us prove that the exponential decrease of the current density J,(h) results in 
the exponential decrease of the tunnelling current It as a function of the distance d 
between nominal surfaces. 
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Let us assume that 

For given sphere-to-plane distances d, and d,, the tunnelling current is given by 

It is clear that, from the aS/ah distribution viewpoint, changing the di6tance d from 
d, to d, is equivalent to shifting the whole BS/ah distribution (d2  - d,) along the 
h-axis. Therefore 

Using (C3) and the variable change U = U - Ad, in which Ad = dz - d,, It (d2)  as 
expressed in (C2) may be written as 

From (Cl) and (C4), this expression may be turned into 
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